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Abstract— Investigation of the dynamic performance of a synchronous generator connected to an infinite bus (SMIB) system is carried out 
in this paper. The generator is equipped with a n onlinear excitation control law based on the concepts of geometric homogeneity and 
feedback linearization. A new positive parameter, called the dilation gain, is introduced in the control law for improved damping of 
oscillations and better dynamic performance. Two models of the system are employed for the study, and a disturbance in form of a network 
fault with varied durations is applied to test the performance of the system. Simulation results as well as MATLAB® code for testing for 
exact linearization of an affine nonlinear system are provided. 

Index Terms— exact linearization, fault cycles, finite-time stability, homogeneity, nonlinear control laws, power system model  

——————————      —————————— 

1 INTRODUCTION                                                                     
typical modern power system generally consists of a 
large number of generating electric power sources (most-
ly synchronous generators) interconnected through 

complex networks of transmission lines with myriad automat-
ic and protection equipment pieces for the sole purpose of 
meeting the power demands of a large number of different 
loads. It has thus been considered as “. . . a high-order multi-
variable system whose dynamic response is influenced by a 
wide array of devices with different characteristics and re-
sponse rates” [1]. In this complex and highly dimensioned 
system, in order to accommodate more load demands and 
provide a constant and reliable electric power supply, power 
system controllers are employed (and constantly being en-
couraged)  at the generation, transmission and distribution 
levels to deliver electric power to the load centers efficiently. 
Besides, generator excitation system controllers have been 
recognized as one of the most reliable and economic way of 
damping power system oscillations and improving the overall 
system stability [2]. Local plant and inter-area mode oscilla-
tions occur in power systems, and pose major challenges to 
power system control engineers. These oscillations are usually 
caused by lack of sufficient generator rotor damping torque 
(and this phenomenon characterized the earliest exciter/AVR 
due to the increase in bandwidth associated with the AVR 
loop) [3], [4]. 
The challenges become more stringent as power systems un-
dergo changes due to network alterations (caused by faults or 
switching events) and/or variations in loads. Owing to the 
availability of powerful and low-cost computing resources, 
which has spurred the design, development, investigation, 
and complete analysis of nonlinear control algorithms, as is 
evident in many practical implementations [5], [6], [7], there 
has been dedicated research in feedback linearization control 
(FBLC)—a significant area of application of nonlinear control 
techniques for power system stabilization. FBLC involves 
complete or partial transformation of nonlinear systems into 
equivalent linear ones that are amenable to linear control de-
sign techniques [8], [9].  Several versions of FBLC have been 
applied to the design of power system excitation control [10], 

[11], [12], [13].  For instance, Gan et al. [11] proposed an im-
proved FBLC using a linear optimal state-space feedback and 
saturation-type nonlinear robust control strategies—here rotor 
angle oscillations were damped out in about 15s after perturb-
ing system under the action of the proposed controller. More 
recently, Mahmud et al. [14] proposed a zero dynamics-based 
excitation controller which was able to remove (in about 1.8-
2s) rotor angle oscillations due to a three-phase fault that last-
ed for about 0.2s. In this paper, a combination of the concepts 
of geometric homogeneity and feedback linearization is em-
ployed to construct a nonlinear excitation controller which has 
the ability to damp out rotor angle oscillations within 2s for a 
three-phase fault with as much as 0.3-s duration. 
In the rest of the paper, Section 1 presents the model of the 
power system for the study, while the construction of the con-
troller is described in Section 3. In Section 4, results of system 
simulations are provided and discussed, and the concluding 
comments are given in Section 5. 

2 POWER SYSTEM MODEL 
Two models of the power system, based on the single machine 
connected to an infinite bus (SMIB) system shown in Fig. 1, are 
employed for the work presented in this paper.  They are the 
one-axis (third-order) and two-axis (fourth-order) models 
which give approximate descriptions of the dynamic perfor-
mance equations of the system. The latter is particularly con-
sidered to further show the performance of the controller un-
der identical network conditions imposed on the former. 
The third-order model is given by [15], [16]  
dδ
dt

= ω−ωs                                                                                                      (1) 
dω
dt

= A1 + F2V2

2
sin2δ−  A4VEq′ sinδ− Tq0′

F3F1
M

V2cos2δ����������� (ω−ωS)     (2) 
dEq′

dt
= −B1Eq′ + B2Vcosδ + 1

Tdo
′ Ef      (3) 

while the fourth-order model is given by [15], [17], [18] 
dδ
dt

= ω−ωs                                             (4) 

 dω
dt

= Tm
M
− 1

2
A1V2sin2δ + A2VEd′ cosδ−  A3VEq′ sinδ   (5) 

A 
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 dEq
′

dt
= −B1Eq′ + B2Vcosδ + 1

Tdo
′ Ef                   (6) 

 dEd
′

dt
= − E1

Tqo′
Ed′ + E2

Tqo′
Vsinδ,                                   (7) 

where δ is the rotor or torque angle in radians, ω is the rotor 
speed in radians/s, Eq′  is the q-axis voltage which is propor-
tional to the field winding flux linkage, Ed′  is the d-axis voltage 
which is proportional to the amortisseur winding flux linkage, 
Ef represents the excitation coil voltage, V is the magnitude of 
the voltage of the infinite bus, ωs is the synchronous speed of 
the generator, Tm is the input torque, and M (= 2H/ωs), is the 
moment of inertia, where H is the generator inertia constant in 
seconds.  
The parameters A1-A3, B1, B2, E1, and E2 are defined as fol-
lows: 
A1 = � 1

Xq′ +XE
− 1

Xd
′ +XE

� 1
M

 ; A2 = � 1
Xq′ +XE

� 1
M

 ; A3 =  � 1
Xd

′ +XE
� 1
M

 

B1 = (Xd+XE)
Tdo

′ �Xd
′ +XE�

 ; B2 = �Xd−Xd
′ �

Tdo
′ �Xd

′ +XE�
 

E1 = �Xq+XE�
�Xq′ +XE�

 ; E2 = �Xq−Xq′ �
�Xq′ +XE�

 

F1 = �Xq−Xq′ �
�Xq+XE�

; F2 = � 1
Xd
′ +XE

− 1
Xq+XE

� 1
M

 ; F3 = � 1
Xq+XE

�. 

 
Fig. 1. Representation of a SMIB 

3 CONTROL LAW CONSTRUCTION 
Consider an affine nonlinear power system represented by the 
model 
ẋ = f(x, t) + g(x)u,             (8) 
where x is the system state vector, f and g are continuously 
differentiable functions, and u is the control signal. The con-
trol law construction consists in 1) obtaining an output signal 
such that the system can be exactly or partly feedback-
linearized, and that the system internal dynamics, if any, re-
main asymptotically stable; and 2) deriving a nonlinear control 
law, u, that will ensure that the output signal becomes zero in 
finite time and remains so thereafter under both normal and 
disturbance-induced conditions.  
 
3.1 System Linearization 
Using a suitable system output function y(x), the system given 
in equation (8) can be exactly linearized into the Bruvnosky 
normal form as 
dz1 dt⁄ = z2                                                                           (9) 
dz2 dt⁄ = z3                                                       (10) 

 ⋮ 
dzn dt⁄ = h,                                                  (11) 
with h given by  
h = f(z) = 𝐿fny + 𝐿g𝐿fn−1yu,                  (12) 
where n is the order of the system, and LgLfi y(x) represents the 
Lie derivative of Lfi y(x) along the function g(x). 
The exact linearization condition can be determined for any 
affine SISO nonlinear system using the flowchart shown in 

Fig. 2 as well as the MATLAB code given in Appendix A 
(which can be readily extended to a MIMO system). The chart 
is based on Definition 1 given below. 
Definition 1 [19]: Consider the nonlinear system in equation 
(8). The system can be exactly linearized if its order n equals 
its relative degree r. This condition is satisfied if the matrix  
P = [g(x) adfg(x) adf2g(x) ⋯ adfn−1g(x)]                 (13) 
has rank n near the system operating point, x0, and the matrix  
D = [g(x) adfg(x) adf2g(x) ⋯ adfn−2g(x)]               (14) 
involutes at x = x0. The involutivity condition is that matrix D 
and any of its variant  
Ds = �g(x) ⋯ adfn−2g(x) �adfig(x), adf

jg(x)��               (15) 
have rank n-2, where i = 1, 2, …, n-2, j = 1, 2, …, n-2, and i ≠ j. 
The symbol adfg(x) or [f(x), g(x)] is called the Lie bracket of 
g(x) along f(x), and adfig(x) = adf �adfi−1g(x)�. 
Various output functions (measurable and/or convenient) can 
be chosen and then tested using the MATLAB code. 

 
3.2 System Controller Derivation 
The overall control law is now obtained based on the concept 
of geometric homogeneity.  Simply stated, homogeneity is the 
feature of functions and vector fields associated with dynamic 
systems, which guarantees their transformation (dilation) 
from one point to another in the state space. 
Generally, system dilation is in the form  
Δe(z) = (em1z1, em2z2,⋯ , emnzn),                    (16) 
which is an extension of the standard dilation [20] 
 Δe(z) = (ez1, ez2,⋯ , ezn).                     (17) 
Therefore, if the system given in equations (9)-(11) is dilated, 
then h in equation (12) becomes  
h = f(emz) or h = f(ez).                  (18) 
This concept is employed to modify the finite-time stabilizing 
feedback controller presented in [20] (Proposition 8.1), and 
given as follows: Consider the system defined in equations (9)-
(11). There exists a feedback control law  
 h(ez) = −k1sign(ez1)|ez1|v1 −⋯− krsign(ezr)|ezr|vr             (19) 
which ensures that the origin is globally finite-stable, where e 
> 0 is called the dilation gain. The positive numbers k1, k2,. . ., 
kr are appropriately selected such that the polynomial  
 pr + krpr−1 + kr−1pr−2 + k1 
is Hurwitz. 
v1, v2, …,vr are found from 
 vi−1 = vivi+1

2vi+1−vi
,        i = 2, 3,⋯ , r 

with 
 vr+1 = 1; vr ∈ (1− ε, 1); ε ∈ (0,1). 
Thus, by combining equations (12) and (19), the control law 
yields 
 u = h(ez)|z=Φ(x)−Lf

ny

LgLf
n−1y

,                  (20) 

where Φ(x) is a diffeomorphism which maps the system from 
x-domain into z-domain and vice versa. 
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Fig. 2. Flowchart for testing the exact linearization condition for a 
general affine SISO nonlinear system 

4 SIMULATION RESULTS AND DISCUSSION 
The graphical results showing the system variables for various 
cycles of a three-phase symmetrical fault applied at the generator 
terminals are displayed in Figs. 3-6. The waveforms indicate a 
performance comparison of the system in terms of dilation (with 
the gain of 5) and non-dilation (with the gain of unity) of the con-
trol signal. The values of all the system parameters, including the 
controller parameters, are provided in Appendix B. 
In all the figures, it is clear that the effect of a positive multiplica-
tive gain is to minimize oscillations, thereby improving the sys-
tem damping—in particular, Fig. 3(a) and Fig. 4(a) show this ef-
fect more clearly, as the control activity (displayed in Fig. 3(d) 
and Fig. 4(d)) reflects. But, as Fig. 5 depicts, the dilation gain 
weakens the controller ability to make the system withstand 
longer fault duration, such as 15cycles. As long as the fault cycle 
does not exceed 14.5cycles (0.29s), which is relatively high, the 
effect of the gain remains constructive (see Fig 4). To further high-
light the benefit of the gain, Fig. 6 shows a similar set of wave-
forms for a fourth-order SMIB system subjected to the same fault 
for duration of 0.18s. 

 
(a) Rotor angle 

 
(b) Rotor speed 

 
(c) Quadrature EMF 

 
(d) Control effort 

Fig. 3: Waveforms showing the effect of the dilation gain 
for a generator terminal fault cleared after 9cycles (third-

order SMIB) 
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(a) Rotor angle 

 
(b) Rotor speed 

 
(c) Quadrature EMF 

 
(d) Control effort 

Fig. 4: Waveforms showing the effect of the dilation gain 
for a generator terminal fault cleared after 14.5cycles 

(third-order SMIB) 
 

 
 
 
 
 

 
 

 
(a) Rotor angle 

 
(b) Rotor speed 

 
(c) Quadrature EMF 

 
(d) Control effort 

Fig. 5: Waveforms showing the effect of the dilation gain 
for a generator terminal fault cleared after 15cycles 

(third-order SMIB) 
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(a) Rotor angle 

 
(b) Rotor speed 

 
(c) Resultant EMF 

 
(d) Control effort 

Fig. 6: Waveforms showing the effect of the dilation gain 
for a generator terminal fault cleared after 9cycles 

(fourth-order SMIB) 

5 CONCLUSION 
Investigation of the performance of synchronous generators 
equipped with nonlinear excitation controller constructed based 
on the concepts of geometric homogeneity and feedback lineari-
zation has been the thrust of this paper. Waveforms demonstrat-
ing the controller performance when the system is disturbed are 
shown. It is established that dilating the control signal has the 

benefit of enhancing system damping. It is important to mention 
that realizing this type of excitation control system will require 
the use of fast power electronic devices. 
 
Appendix A 
MATLAB Code for Testing the Exact Linearization Condition 
for a General Affine Nonlinear System 
%This function OutputResult=ELCOND(F,G,S)is used to deter-
mine the exact linearization %conditions for any given affine non-
linear SISO system dX/dt=f(X) + g(X)u, where X %represents the 
states (x1, x2,...,xn) of the system. F, G, and S are symbolic expres-
sions for %f(x),g(x), and the states, respectively. OutputResult is a 
vector of string elements stating %whether the system can be 
exactly linearized or not. Note that the order of the system must 
be %at least 2. ALSO, NOTE THAT THE STATES IN F AND G 
APPEAR AS x1, x2, x3,..., xn, %WITH THESE , OF COURSE, 
HAVING BEEN DEFINED AS SYMBOLIC VARIABLES. %For 
example, the system dx(1)/dt=x(1)sin x(2)+20x(1)-2u and 
dx(2)/dt=cos x(1)+ 10u having %steady-state values x0(1)=0.5 
and x0(2)=2 is created as: syms x1 x2 f g 
% f=[x1*sin(x2)+ 20*x1 cos(x1)+10]';g=[-2 10]';x=[x1 x2]'; 
Function   OutputResult=elcond(f,g,x) 
sysorder=length(f); d=sysorder-1; 
m=zeros(sysorder,sysorder); dd=zeros(sysorder,d); 
M= sym(m); D=sym(dd); 
f_diff=jacobian(f,x); 
M(:,1)=g; 
% Compute the elements of M 
for k=2:sysorder 
    M(:,k)=(jacobian(M(:,k-1),x)*f)-(f_diff*M(:,k-1)); 
end 
% Compute the elements of D and De 
if d==1; 
D(:,d)=g; 
else 
for  i=2:d; 
D(:,i)=M(:,i); 
end 
D(:,1)=g; 
    De=D; 
    De(:,sysorder)=jacobian(D(:,2),x)*D(:,1)-jacobian(D(:,1),x)*D(:,2); 
end 
% Check for the exact linearization conditions 
input('Enter all the n steady-state values as : x1 =  ; x2 = ; x3 =  ; ... ; 
xn =  ;   ') 
input('Enter all the system parameters if any or press the return 
key       ') 
M_comp=subs(M);D_comp=subs(D);De_comp=subs(De); 
M_rank=rank(M_comp);D_rank=rank(D_comp);De_rank=rank(
De_comp); 
if d==1; 
if M_rank==sysorder; 
OutputResult='The system can be exactly linearized, i.e., there is 
an output function that makes the system relative equal to the 
system order '; 
else 
OutputResult='The system cannot be exactly linearized, i.e.,an 
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output function does not exist to make the system relative equal 
to the system order '; 
end 
else 
if M_rank==sysorder && D_rank==De_rank; 
OutputResult='The system can be exactly linearized, i.e., there is 
an output function that makes the system relative degree equal to 
the system order'; 
else 
OutputResult='The system cannot be exactly linearized, i.e., an 
output function does not exist to make the system relative degree 
equal to the system order'; 
end 
end 
 
Appendix B 
Typical values for the system parameters employed for this 
study are given in Table 1 below [16], [17]. 
Table 1. SMIB Typical Parameters 

Synchronous reactance: Xd = 0.9 p.u.; Xq = 0.7 p.u. 

Transient reactance: X’d= 0.2 p.u.; X’q= 0.2 p.u. 
Open-circuit transient time 
constant: 

T’do= 5.00 s; T’qo = 0.13 s 

Inertial constant: H = 5.00 s 
Input torque: Tm = 0.8413 
Transmission line reactance: XE = 0.24 p.u. 
Transformer reactance: XT = 0.13 p.u. 
Infinite-bus voltage magni-
tude: 

V = 1.0 p.u. 

 
Also, the parameters k1, k2, and k3 of h(ez) given in equation 
(19) are found using the pole-placement method from 
 p3 + k3p2 + k2p + k1 = (p + a1)(p + a2)(p + a3) = 0           (A1) 
where a1 = 9, a2 = 5, and a3 = 2. Thus, k1 = 90, k2 = 73, and k3 
= 16; the value of parameter v3, from which v1 = 1/2 and v2 = 
3/5 are obtained, is 3/4. The value of the dilation constant e is 
5.  
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